Foam Scatter Grenoble, 2022

# 3D characterisation of liquid foam flow

F. SCHOTT<sup>1</sup>, C. RAUFASTE<sup>2</sup>, B. DOLLET<sup>3</sup>, S. SANTUCCI<sup>4</sup>, C. CLAUDET<sup>2</sup>, R. MOKSO<sup>1,5,6</sup>

Lund University<sup>1</sup>, Université Côte d'Azur<sup>2</sup>, Université Grenoble Alpes<sup>3</sup>, ENS Lyon<sup>4</sup>, Paul Scherrer Institute<sup>5</sup>, MAX IV laboratory<sup>6</sup>



Credit: https://www.flickr.com/photos/125216703@N02

# Liquid foam – Structure

#### Liquid foam

= dispersion of gas bubbles into a continuous liquid phase

= interfaces stabilised by surfactants



1 cm

Credit: istockphoto.com, Nov 2021

Credit: Sascha Heitkam, "Bubble, Foam, Froth" course, Technische Universität Dresden, 2020

#### Multiscale structure

soap film (nano/micro) – bubbles (meso) – foam (macro)

# Liquid foam – Applications

#### **Everyday-life products**

#### Cosmetic



Tetra Images/Getty Images

#### Food science



#### Larger industrial applications

#### Soil remediation



Pacific Northwest National Laboratory, 2019

#### Firefighting



Shutterstock

### General objective of our collaboration

Characterising experimentally and understanding the **deformations** and **interactions** of bubbles inside a **3D flowing liquid foam** 

a long-standing collaborative effort!





# Main technical challenges

3D imaging  $\rightarrow$  Foam opacity



Spatial resolution  $\rightarrow$  Foam structure

Bubble film < μm Liquid channel **~ 3-50 μm** 

Foam stability  $\rightarrow$  Ageing

Stable for at least 1 min





### Solution

Fast x-ray micro-tomography, PSI synchrotron



Credit: https://www.psi.ch/en/sls/about-sls

Use of **fast x-ray micro-tomography** for **3D imaging of liquid foam flowing** through a constriction



Image analysis – Workflow







### Results – Analysis of the flow

Dimensions: experiment and field of view



Cylindrical and spherical bases centred on the virtual cone tip henceforth spherical basis will be used



### Results – Averaged flow field

250

200

150

100

20-

um/s

42 Images: time and space average





- ``pull" experiment
- $\bullet$  average bubble radius: 84  $\mu m$
- polydispersity: 44%
- liquid fraction: 28%

- individual data points: displacement of each bubble between two consecutive images
- large dispersion!
- but everything smoothes out once averaged over time and spherical coordinates  $\theta$  and  $\phi$
- $1/r^2$  dependence: originates from volume conservation

### Results – Averaged flow field





Spherical volume conservation flow

Reference flow with the same flow rate

$$\overrightarrow{V_r(r)} = -\frac{q}{r^2}\overrightarrow{e_r}$$



### Results: deformation field



# Ongoing work

Quantify the plastic events



Source: C. Raufaste et al., EPL (2015)

### Recent experiment

Coupling rheometry and tomographic real-time 3D imaging (with Stefan Gstöhl and Christian Schlepütz, PSI)

Take a rheometer:

Adapt it to the beamline:





### Recent experiment

Coupling rheometry and tomographic real-time 3D imaging (with Stefan Gstöhl and Christian Schlepütz, PSI)



Two corotating parallel plates of diameter 5 mm: • average rotation rate  $(\omega_1 + \omega_2)/2$  for the tomography

- differential rotation rate  $|\omega_1 \omega_2|$  to apply strain
- Foam inserted between the two plates and illuminated by the beam