

Liquid foam - Structure

Liquid foam

= dispersion of gas bubbles into a continuous liquid phase
= interfaces stabilised by surfactants

Multiscale structure
soap film (nano/micro) - bubbles (meso) - foam (macro)

Liquid foam - Applications

Everyday-life products
Cosmetic

Tetra Images/Getty Images
Food science

Larger industrial applications
Soil remediation

Firefighting

General objective of our collaboration

Characterising experimentally and understanding the deformations and interactions of bubbles inside a 3D flowing liquid foam
a long-standing collaborative effort!

Main technical challenges

```
3D imaging }->\mathrm{ Foam opacity
```

Spatial resolution \rightarrow Foam structure
Bubble film < $\mu \mathrm{m}$
Liquid channel ~ 3-50 $\mu \mathrm{m}$

Foam stability \rightarrow Ageing

Stable for at least $1 \mathbf{m i n}$

Solution

Fast x-ray micro-tomography, PSI synchrotron

Credit: https://www.psi.ch/en/sls/about-sls

Use of fast x-ray micro-tomography for 3D imaging of liquid foam flowing through a constriction

Image analysis - Workflow

Images in 3D

Results - Analysis of the flow

Dimensions: experiment and field of view

Cylindrical and spherical bases centred on the virtual cone tip henceforth spherical basis will be used

Results - Averaged flow field

42 Images: time and space average

- "pull" experiment
- average bubble radius: $84 \mu \mathrm{~m}$
- polydispersity: 44\%
- liquid fraction: 28\%
- individual data points: displacement of each bubble between two consecutive images
- large dispersion!
- but everything smoothes out once averaged over time and spherical coordinates θ and φ
- $1 / r^{2}$ dependence: originates from volume conservation

Results - Averaged flow field

42 Images: time and space average

Spherical volume conservation flow
Reference flow with the same flow rate

$$
\overrightarrow{V_{r}(r)}=-\frac{q}{r^{2}} \overrightarrow{e_{r}}
$$

Push experiment
Results: deformation field

Pull experiment

Oblate shape:
Axial contraction $\mathrm{U}_{\mathrm{rr}}<0$
Lateral extension $\mathrm{U}_{\theta \theta}, \mathrm{U}_{\varphi \varphi}>0$

Prolate shape:

Results: deformation field

	Flow	$r_{e q}$	ϕ_{l}												
\%	Conv.	$154 \mu m$	0.12 ± 0.02	,	Conv.	$154 \mu m$	0.16 ± 0.03	\bigcirc	Conv.	$155 \mu m$	0.23 ± 0.05	M	Conv.	$68 \mu m$	0.27 ± 0.03
3	Div.	$150 \mu \mathrm{~m}$	0.12 ± 0.02	\bigcirc	Div.	$154 \mu m$	0.15 ± 0.02	\bigcirc	Div.	$153 \mu \mathrm{~m}$	0.22 ± 0.04	3	Div.	$68 \mu m$	0.25 ± 0.03

Ongoing work

Quantify the plastic events

Recent experiment

Coupling rheometry and tomographic real-time 3D imaging (with Stefan Gstöhl and Christian Schlepütz, PSI)
Take a rheometer:
Adapt it to the beamline:

Recent experiment

Coupling rheometry and tomographic real-time 3D imaging (with Stefan Gstöhl and Christian Schlepütz, PSI)

Two corotating parallel plates of diameter 5 mm :

- average rotation rate $\left(\omega_{1}+\omega_{2}\right) / 2$ for the tomography
- differential rotation rate $\left|\omega_{1}-\omega_{2}\right|$ to apply strain
- - - Foam inserted between the two plates and illuminated by the beam

