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Motivations

Tissue morphogenesis

Multi-cellularity and neighbour changes
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Fruit fly metamorphosis Larva → adult

Drosophila
melanogaster

pupae
development

duration :
5 days

http ://www.exploratorium.edu/
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Multi-scale live imaging Bosveld

zoom waist dorsal thorax neck

1 layer∼7000 cells 12-38h after pupa formation ∼3 decades time & space



Motivations 2D inert 2D active 3D Conclusion

Linking scales

cell
scale

−→ cell group
scale

−→ tissue
scale

statistical physics :
determine the

material parameters

viscosity η
stiffness G

yield strain εY

continuum mechanics :
determine the
dynamical fields

velocity V
strain ε
stress σ
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Continuous description Guirao

It enables :
compare experiments
and/or simulations
average them,
determine their variability
subtract them,
determine effect of parameters

It requires :
fluctuations average out
cells in group : number � 1
thanks to average over
space, time and samples
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Inert cellular materials

foam as model system

D. Cuvelier



Motivations 2D inert 2D active 3D Conclusion

Deform a foam Marmottant

local energy minimum

yield
εY
→

neighbour change

time
τR
→

relaxation to other minimum

Small deformation
elastic solid

reversibly comes back
to its initial shape

Large deformation

plastic solid

irreversibly sculpted,
new shape

Quick deformation rate
viscous liquid

irreversibly flows,
stress increases with rate

no gap, no overlap → deform through rearrangements
→ viscous, elastic, plastic (VEP) behaviour
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Foam flow around obstacle Dollet, Raufaste

• heterogeneous : variety of shears and elastic deformations

• can discriminate between models ?

control
parameters :
• 2D
• water 1.2%
• monodisperse
• V = 0.6 cm/s
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Statistical measurements Aubouy, Marmottant

Velocity

Texture Bubble shape and packing

A B

λ0 λ2

λ1

λ0

isotropic anisotropic
circle ellipse

Velocity gradient

Shape change

Plasticity Neighbour change

deformation rates : total = elastic + plastic
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Prediction ? Cheddadi

speed along the main axis y = 0
referential moving with the foam

visco-elasto-plastic model
main parameter : yield strain

prediction : continuous model

dry foam experiment : discrete measurements
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Good agreement

- amplitude of v
- orientation of v
- recirculation zones
- up/down asymmetry
- v = 0 point
- overshoot
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Graphs of elastic strain tensor xx − yy and xy components
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Cell monolayer

around an obstacle
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Migration around an obstacle Tlili
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Velocity field Tlili

image correlation : “particle image velocimetry"
no need to identify (“segment") cell contours
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Averaged velocity field Tlili, Durande

average
over time
and/or over
experiments
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Deformation field Tlili, Durande

cell shape : “Fourier transform"
no need to identify (“segment") cell contours
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Comparison Tlili

Cell rearrangements & cell deformation fields

visco-elastic liquid behaviour visco-elastic time 70 min
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Visco-elastic time Tlili

τ independent on obstacle size & independent on division rate
slowed down by myosin inhibitor, related to cell rearrangements
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Cell aggregate

through a constriction
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Aspire a cell aggregate Tlili

• 1 movie = 3 experiments : constriction, divergence, elasto-capillarity
• heterogeneous : induced cell rearrangements, many informations
• measure and link : cell shape, neighbour changes, local viscoelastic properties
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All measures without segmentation Tlili

velocity shear compression shape plastic

ηr from previous experiments Elasto-capillar number ∼ 1
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Conclusion
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Summary of approach

Objects with disorder, elasticity, rearrangements

Very general applications : bubbles in foam, cells in
tissue, grains in polycrystal, atoms in glass, drops in
emulsion, magnetic domains, packed soft objects, etc

total deformation rate
= elastic deformation rate
+ plastic deformation rate

experiments and simulations which vary in space

coarse grain → continuous description

compare experiments and/or simulations



Motivations 2D inert 2D active 3D Conclusion

Summary of results

How do objects with disorder, elasticity flow ?

powerful statistical tools to analyse data

cellular structure → emergent solid behaviour

inert case → coarse-grain & model predicts flow

activity → emergent collective migration

extract rheological equations and parameters
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Perspectives in progress

Model Shourick

Boundaries Durande

Simulations Beatrici

In vivo Villedieu
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Thanks
• MSC - biophysics S. Tlili, M. Durande, A. Souchaud

S. Yamashita, C. Beatrici, A. Baptista
• MSC - theory J. Tailleur, M. Durand,

R. Sheshka, G. Spera
• Lyon - biophysics H. Delanoë-Ayari, T. Homan, G. Duprez

O. Cochet-Escartin, A. Biquet
• Grenoble - foams B. Dollet, C. Raufaste

P. Marmottant, C. Quilliet
• Grenoble - maths P. Saramito, I. Cheddadi, N. Shourick
• Curie - fly genetics Y. Bellaïche, F. Bosveld, P.-L. Bardet

A. Villedieu, M. Balakireva
• Curie - physics B. Guirao, I. Bonnet, S. Rigaud, P. Marcq
• Heidelberg - mouse T. Hiiragi, A. Ryan, C.J. Chan
• Monod - fly evolution V. Courtier, A. Peluffo, M. Monier
• Japan - force inference K. Sugimura, S. Ishihara
• Brazil - simulations L. Brunnet, G. Thomas, R. de Almeida


