Motivations	2D inert	2D active	3D	Conclusion
0000	00000	000000	00	000
c				

foam - M. Asipauskas

tissue - Blankenship et al.

Motivations	2D inert	2D active	3D	Conclusion
0000	00000	000000	00	000

Disorder, elasticity, rearrangements e.g. in foams or biological tissues

François Graner

Complex Systems and Matter CNRS & Université Paris Cité, France

francois.graner@univ-paris-diderot.fr
http://francois.graner.name

2022

Motivations	2D inert	2D active	3D	Conclusion
0000	00000	000000	00	
Outline				

1 Motivations

Motivations	2D inert	2D active	3D	Conclusion
0000	00000	000000	00	000

Motivations

Tissue morphogenesis

Multi-cellularity and neighbour changes

Motivations2D inert2D active3DConclusion•000000000000000000000000000000Fruit fly metamorphosisLarva → adult

Drosophila melanogaster pupae development

> duration : 5 days

http://www.exploratorium.edu/

1 layer \sim 7000 cells

12-38h after pupa formation

 ${\sim}3$ decades time & space

Motivations	2D inert	2D active	3D	Conclusion
00●0	00000	000000	00	
Linking scales				

stiffness Gyield strain ε_Y dynamical fields velocity Vstrain ε stress σ

Motivations
coool2D inert
coool2D active
coool3D
coolConclusion
coolContinuous descriptionGuirao

It enables :

- compare experiments and/or simulations
- average them, determine their variability
- subtract them, determine effect of parameters

It requires :

- fluctuations average out
- cells in group : number $\gg 1$
- thanks to average over space, time and samples

Motivations	2D inert	2D active	3D	Conclusion
0000	00000	000000	00	000

Inert cellular materials

foam as model system

D. Cuvelier

Motivations	2D inert	2D active	3D	Conclusion
0000	●0000	000000	00	
Deform a	foam			Marmottant

local energy minimum

Motivations	2D inert	2D active	3D	Conclusion
0000	●0000	000000	00	
Deform a	foam			Marmottant

local energy minimum

Small deformation elastic solid

reversibly comes back to its initial shape

Motivations	2D inert	2D active	3D	Conclusion
0000	●0000	000000	00	000
Deform a	a foam			Marmottant

local energy minimum

yield $\varepsilon_Y \rightarrow$

neighbour change

Small deformation

elastic solid

reversibly comes back to its initial shape

Motivations	2D inert ●0000	2D active 000000	3D 00	Conclusion
Deform	a foam			Marmottant

local energy minimum

εγ

 \rightarrow

neighbour change

time τ_R \rightarrow

relaxation to other minimum

Small deformation elastic solid reversibly comes back

to its initial shape

Motivations 0000	2D inert ●0000	2D active 000000		3D 00	Conclusion
Deform	a foam				Marmottant
$\langle \zeta \rangle$	$\bigvee_{\substack{\varepsilon_{Y}\\ \rightarrow}} $ yield		time $ au_R \to$	t	\mathfrak{S}

local energy minimum

neighbour change

relaxation to other minimum

Small deformation elastic solid

reversibly comes back to its initial shape

Large deformation plastic solid irreversibly sculpted, new shape

Motivations	2D iner ●0000	t 2D active	3D 00	Conclusion
Deform	n a foa	m		Marmottant
local ener		$ \begin{array}{c} \varepsilon_{Y} \\ \rightarrow \end{array} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	time τ_R \rightarrow relaxation to o	ther minimum
Small deform elastic reversibly c to its init	: solid omes back	Large deformation plastic solid irreversibly sculpted, new shape	Quick deform viscous irreversib stress increas	s liquid bly flows,

Motivations 2D in 0000 0000		3D 00	Conclusion
Deform a for	am		Marmottant
local energy minimum	yield ε_{Y} \rightarrow neighbour change	time τ_R \rightarrow relaxation to	other minimum
Small deformation	Large deformation	Quick defor	mation rate
elastic solid	plastic solid	viscou	is liquid
reversibly comes back to its initial shape	irreversibly sculpted new shape		bly flows, ases with rate

no gap, no overlap

 \rightarrow deform through rearrangements \rightarrow viscous, elastic, plastic (VEP) behaviour

Motivations	2D inert	2D active	3D	Conclusion
	0●000	000000	00	000
Foam flow	/ around	lobstacle		Dollet, Raufaste

- heterogeneous : variety of shears and elastic deformations
- can discriminate between models?

control

- parameters :
- 2D
- water 1.2%
- monodisperse
- V = 0.6 cm/s

Motivations	2D inert	2D active	3D	Conclusion
0000	00●00	000000	00	000
Statistical me	easurements		Aubou	y, Marmottant

Motivations	2D inert	2D active	3D	Conclusion
0000	00●00	000000	00	000
Statistical mea	surements		Aubou	y, Marmottant

Motivations	2D inert	2D active	3D	Conclusion
0000	00●00	000000	00	000
Statistical me	asurements		Aubou	y, Marmottant

Shape change

Motivations	2D inert	2D active	3D	Conclusion
0000	00●00	000000	00	000
Statistical me	asurements		Aubou	y, Marmottant

Shape change

Motivations	2D inert	2D active	3D	Conclusion
0000	00●00	000000	00	000
Statistical me	asurements		Aubou	y, Marmottant

Shape change

deformation rates : total = elastic + plastic

Motivations 0000	2D inert 000●0	2D active 000000	3D 00	Conclusion 000
Predicti	ion?			Cheddadi
speed along the main	y = 0		2. 🛦	

referential moving with the foam visco-elasto-plastic model main parameter : yield strain

prediction : continuous model

dry foam experiment : discrete measurements

Good agreement

- amplitude of ${\bf v}$
- orientation of \boldsymbol{v}
- recirculation zones
- up/down asymmetry
- v = 0 point
- overshoot

Motivations	2D inert	2D active	3D	Conclusion
0000	00000	000000	00	000

Graphs of elastic strain tensor

xx - yy and xy components

Agrees on position and amplitude of local extrema

Motivations	2D inert	2D active	3D	Conclusion
0000	00000	000000	00	000

Cell monolayer

around an obstacle

Motivations 2D inert 2D active 3D Conclusion 000000 Tlili

Velocity field

image correlation : "particle image velocimetry" no need to identify ("segment") cell contours

Motivations	2D inert 00000	2D active ○○●○○○	3D 00	Conclusion
Averaged	velocity	field		Tlili, Durande
average over time and/or over experiments				

 Motivations
 2D inert
 2D active
 3D
 Conclusion

 0000
 00000
 00000
 000
 000

Deformation field

Tlili, Durande

cell shape : "Fourier transform"
no need to identify ("segment") cell contours

Motivations	2D inert	2D active	3D	Conclusion
0000	00000	0000●0	00	
Compai	rison			Tlili

Cell rearrangements & cell deformation fields

visco-elastic liquid behaviour

visco-elastic time 70 min

 τ independent on obstacle size & independent on division rate slowed down by myosin inhibitor, related to cell rearrangements

Motivations	2D inert	2D active	3D	Conclusion
0000	00000	000000	00	000

Cell aggregate

through a constriction

Motivations2D inert2D active3DConclusionOOOOOOOOOOOOOOOOOOOOOOOOAspire a cell aggregateTlili

• 1 movie = 3 experiments : constriction, divergence, elasto-capillarity

• heterogeneous : induced cell rearrangements, many informations

• measure and link : cell shape, neighbour changes, local viscoelastic properties

	cell group scale visco-elastic relaxation time	$ au_r$	$10^{3} { m s}$
_	cell group scale viscosity	η_r	10^5 Pa.s
$- \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ &$	elastic modulus	G	10^2 Pa
	• cell scale visco-elastic relaxation time	$\tau_{\rm cell}$	10^2 s
	cell scale viscosity	$\eta_{ m cell}$	10^4 Pa.s
η_{cell}	aggregate scale capillary modulus	(Γ/R)	10^2 Pa

 η_r from previous experiments

Elasto-capillar number ~ 1

Motivations	2D inert	2D active	3D	Conclusion
0000	00000	000000	00	000

Conclusion

Summary of approach

2D inert

Motivations

Objects with disorder, elasticity, rearrangements

• Very general applications : bubbles in foam, cells in tissue, grains in polycrystal, atoms in glass, drops in emulsion, magnetic domains, packed soft objects, etc

2D active

3D

Conclusion

000

- total deformation rate
 elastic deformation rate
 + plastic deformation rate
- experiments and simulations which vary in space
- $\bullet\ coarse\ grain \rightarrow continuous\ description$
- compare experiments and/or simulations

0000	00000	000000	00	000			
Summary of results							

How do objects with disorder, elasticity flow?

- powerful statistical tools to analyse data
- cellular structure \rightarrow emergent solid behaviour
- \bullet inert case \rightarrow coarse-grain & model predicts flow
- \bullet activity \rightarrow emergent collective migration
- extract rheological equations and parameters

Motivations 0000	2D inert 00000		2D active 000000	3D 00	Conclusion
Perspec	tives				in progress
Model		Shourick	Simula	ations	Beatrici
$\begin{split} & W_{0} \\ & W_{0} \\ & \frac{1}{2M} \\ & \frac{4M}{m} \\ & \tau \\ & \tau \\ & \tau \\ & -\tau \\ & \sigma \\ & -\tau \\ & \sigma \\ & \sigma \\ & \frac{1}{2M} \\ & \sigma \\ &$	$\begin{split} & -c_{ij}^{(1)} d_{ij} - J_{ij} + g = 0, \\ & \frac{\partial \omega}{\partial x} + \nabla \left((m + 0), \\ -\nabla V_{ijk} + g \mathcal{L}^{(1)}_{(1)} + (m + 0), \\ -\nabla V_{ijk} + g \mathcal{L}^{(1)}_{(1)} + (m + 0), \\ -\nabla V_{ijk} + g \mathcal{L}^{(1)}_{(1)} + (m + 0), \\ -D V_{ijk} + (m + 0) + (m + 0) - M V_{ijk} \\ & -D V_{ijk} + (m + 0) + (m + 0) - M V_{ijk} \\ -D V_{ijk} + (m + 0) + (m + 0) - M V_{ijk} \\ -D V_{ijk} + (m + 0) - (m + 0) - M V_{ijk} \\ & -D V_{ijk} + (m + 0) - (m + 0) - M V_{ijk} \\ & -U_{ijk} - V_{ijk} - V_{ijk} \\ & -U_{ijk} - V_{ijk} \\ & -V_{ijk} - V_{ijk} - V_{ijk} \\ & -V_{ijk} \\ \end{pmatrix} $	(1366) (1466) (466) (446) (446) (446) (446) (446) (446) (446) (446) (446)			
Boundar	ies	Durande	In vivo	C	Villedieu
		200 Jun			

	2D active	3D 00	Conclusion			
• MSC - biophysics		S. Tlili, M. Durande, A. Souchaud S. Yamashita, C. Beatrici, A. Baptista J. Tailleur, M. Durand, R. Sheshka, G. Spera				
• MSC - theory						
• Lyon - biophysics		H. Delanoë-Ayari, T. Homan, G. Duprez O. Cochet-Escartin, A. Biguet				
Grenoble - foams		B. Dollet, C. Raufaste P. Marmottant, C. Quilliet				
• Grenoble - maths						
• Curie - fly genetics		Y. Bellaïche, F. Bosveld, PL. Bardet A. Villedieu, M. Balakireva				
	B. Guirao, I. Bor	nnet, S. Rigau	d, P. Marcq			
tion rence	V. Court	ier, A. Peluffo, K. Sugimura,	M. Monier S. Ishihara			
		S. Tlili, f S. Tlili, f S. Yamashita H. Delanoë-Ay O. C F P. Saramito, C S S B. Guirao, I. Bor Se T. H V. Courti rence	S. Tlili, M. Durande, A S. Yamashita, C. Beatrici, J. Tailleur, R. Sheshk H. Delanoë-Ayari, T. Homan O. Cochet-Escartin B. Dollet, P. Marmottant P. Saramito, I. Cheddadi, I Y. Bellaïche, F. Bosveld, F A. Villedieu, M. B. Guirao, I. Bonnet, S. Rigau Se T. Hiiragi, A. Ryan V. Courtier, A. Peluffo, rence K. Sugimura,			