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How to find the appropriate theory?
• no clue what the theory is?
• try to measure it!
• here: disordered elastic systems
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ũ(x, t)ũ(x, t′�)Δ(u(x, t) − u(x, t′�))

Theory

η∂tu(x, t) = c∇2u(x, t) + m2[w − u(x, t)] + F(x, u(x, t))

Equation of motion (for SR elasticity for simplicity)

Forces are drawn from a Gaussian, and have correlations

F(x, u)F(x′�, u′�)c = δd(x − x′�)Δ(u − u′�)

Field theory (MSR=classical limit  of Keldysh)ℏ → 0

𝒮[ũ, u] = ∫x,t
ũ(x, t)[η∂tu(x, t) − c∇2u(x, t) + m2(u(x, t) − w)]

height of the interface

will be measured

w = vt



Δ(w − w′�) ≡ Γ(2) = ℒ ∘ uwuw′�
c = [ℛ−1]2 uwuw′�

c = (m2)2uwuw′�
c

−
1
2 ∫x,t,t′ �

ũ(x, t)ũ(x, t′�)Δ(u(x, t) − u(x, t′ �))

Why did we measure ?Δ
action

IR scale

want to measure

uw := lim
t→∞

1
Ld ∫x

u(x, t)
w

center of mass at large , i.e. t ω → 0

unrenormalized

external
field

Legendre transform amputate 2-point function (response)

𝒮[ũ, u] = ∫x,t
ũ(x, t)[η∂tu(x, t) − c∇2u(x, t) + m2(u(x, t) − w)]
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FIG. 1. (a) Experimental setup. (b) Unzipping (red) and rezipping (blue) FDCs demonstrating equilibrium behaviour. The residual hysteresis
at the end of the FDC is due to the DNA end-loop that slows down the initiation of stem formation upon reconvolution. (c) Experimental
FDCs, F (w), for various salt concentrations. The mean pinning force varies between 12-17pN, and is non-universal.

Fw followed by abrupt drops caused by the cooperative un-
zipping (or rezipping) of a group of base pairs. The number
of basepairs released and absorbed in the rips has been pre-
viously measured and range from a few tens to hundreds of
basepairs [7].

The slope of each segment, equivalent to the effective stiff-
ness m2, decreases during the experiment, permitting us to
measure the scaling of �m,T (w) with m2. In fact, m2 de-
pends on the combined effects of the optical trap, and the
elastic response of the molecular construct (ssDNA, dsDNA
handles). It can be written as, see Eq. (B27)

1

m2
=

1

kb
+

w

zk1
, (4)

where kb is the stiffness of the naked bead (no hairpin at-
tached), while z ⌘ hz1i is the mean extension and k1 the
stiffness of one nucleotide. Modeling the elastic response of
the hairpin [8] shows that k1 ⇡ 130pN/nm and z ⇡ 0.45nm
at the critical force fc ⇡ 15 pN, which gives a slope of about
(zk1)�1 ⇡ 0.02pN�1. This result agrees with the experi-
mental measurement of the slope shown in Fig. 2. Eq. (4)
implies that the larger the length of the unpaired DNA, the
lower the effective stiffness. To verify this behaviour, we split
the FDCs into four regions (see inset of Fig. 2). This is a
compromise: while smaller segments yield smaller variation
in m2, segments must be taken sufficiently large for a reliable
statistics.

As mentioned above, force correlations in the Sinai model
can be framed in terms of the functional renormalisation group
(FRG). The FRG arises as the field theory approach to disor-
dered systems for interfaces [10–20], generalising the d = 0
case described by the Sinai model. The FRG predicts the ex-
istence of two universality classes, critical depinning (non-
equilibrium) and equilibrium (considered here). In equilib-
rium, the T ! 0 limit of �m,T (w) in Eq. (3), can be written

m�2[pN�1 · nm]

FIG. 2. The measured effective confining potential m2, compared
to the prediction (4) is checked in the main plot. A weighted fit and
extrapolation to w = 0 yields a stiffness of the optical trap of about
m2

0 = 0.05± 0.01pN · nm�1. Inset: Illustration of the four studied
regions as mentioned in the main text.

as

�m(w) = m4⇢2m�̃(w/⇢m), ⇢m ⇠ m�⇣ , (5)

with �̃(w) the shape function. The scaling relation for ⇢m
defines the roughness exponent. The FRG allows for observ-
ables to be computed perturbatively in an expansion around
the upper critical dimension, here parameterised by " = 4�d.
The shape function �̃(w) is the fixed point of an FRG flow
equation,

0 = ("�2⇣)�̃(w) + ⇣w�̃0(w) � 1

2
@2
w

⇥
�̃(w)��̃(0)

⇤2
+ . . .

(6)
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FIG. 4. Inset: The function �m(w) for the four regions
changes with the measured m (see Fig 5). Main: Collapse of
�m(w) according to Eq. (4) with ⇣ = 4/3. In black we show
the theoretical �m(w), with ⇢m = 29(3)nm as predicted by
the microscopic disorder.

This relation holds for the microscopic �1(u) and the
measured �m(w), as the area under �m(w) is preserved
by the RG flow, as previously discussed. A constant � in
Eq. (8) implies ⇣ = 4/3 for all m in Eq. (4). Eq. (8) then
yields the analytic prediction

⇢m =

" R
w>0 �1(w)

m4
R
w>0 �̃(w)

#1/3

. (9)

In appendix C, we discuss how the microscopic correla-
tor �1(w) can be obtained from the binding energies,
using our estimate of �1(0) ⇡ 10(2)pN2, which decays
to half this value for base-pair distance 1, and to 0 for
base-pair distance 2, corresponding to 1.6nm. A linear
interpolation of �1(u) between these values gives � =
8(2)pN2 · nm in Eq. (8). Using

R
w>0 �̃(w) = 0.252 from

Eq. (7), and substituting in Eq. (9) gives ⇢m = 29(3)nm
for region 1 in agreement with the value previously ob-
tained (⇢m ⇡ 27nm for m2 = 0.036 pN/nm in Fig. 5).
In Fig. 4 (main) we show the predicted force correlator
(black curve) with the predicted ⇢m = 29(3)nm.

Conclusions. We tested Sinai’s model of equilibrium
force correlations and its universality in DNA unzip-
ping experiments. In DNA the binding energies be-
tween complementary base pairs are correlated up to a
2 bp distance, making it a suitable realization of Sinai’s
model. We experimentally measured the roughness expo-
nent ⇣ finding agreement with Sinai’s prediction, ⇣ = 4/3.
While predictions for critical exponents are common-
place, far more di�cult is to predict the amplitude and
the correlation length of correlation functions in critical
phenomena. Here we showed that the amplitude of force
correlations and its correlation length can be predicted

5

We can go one step further: In RF systems, the
potential correlator grows linearly at large distances,
1
2 (V (u) � V (u0))2 ' �|u � u0|. The constant � is related
to the force correlator � as

� =

Z 1

0
�0(u)du ⌘

Z 1

0
�m(w)dw. (10)

This relation is valid both for the microscopic force correlator
�0(u), as for the measured effective force correlator �m(w),
since such a LR correlated function cannot be changed under
RG. This enforces ⇣ = 4/3 in Eq. (5), and conservation of the
integral (10). The variance of the microscopically measured
�0(0) =???, which decays to half this value for base-pair
distance 1, and to 0 for base-pair distance 2. Interpolating
linearly, this yields � =??? for the integral. Eq. (5) then yields
the analytic prediction

⇢m =

" R
w>0 �0(w)

m4
R

w>0 �̃(w)

#1/3

. (11)

Using
R

w>0 �̃(w) = 0.252 from Eq. (9) this gives ⇢m =???

Observable region 1 region 2 region 3 region 4
w[nm] [0, 800] [800,2200] [2200, 4200] [4200,6200]

m2[pN/nm] 0.036(3) 0.027(3) 0.016(4) 0.007(4)

�m [nm] 27(3) 29(3) 42(4) 76(5)

�m(0)[pN2] 0.44 0.38 0.31 0.18

�0
m(0)[pN2/nm] 0.032 0.018 0.0099 0.0032

TABLE I. Properties of the force correlator for each of the four seg-
ments as shown in Fig. 2. The scale ⇢m is obtained from the measure-
ment of �m(0)/�0

m(0) times a numerical constant to get back the
scale ⇢m in Eq. (5). Using Eq. (9), this constant is �̃m(0)/�̃0

m(0) =
1.36.

IV. CONCLUSION

To the best of our knowledge, this is the first test of Sinai’s
model in an experiment. Sinai’s model predicts, and our ex-
periments confirm, that there is a single scale for the corre-
lator of forces. On the theoretical side, this is a gratifying
result. In particular, one can contrast this experiment to the
peeling of complementary RNA-DNA strands, belonging to
the depinning universality class, and characterised by a sig-
nificantly larger effective stiffness m2. It also has a larger
correlation length of about 186 base pairs as compared to our
24 to 76. The possibility to open base pairs by thermal fluc-
tuations is reduced to at most a few. Thus, a description by
zero-temperature depinning is sufficient there, whereas ther-
mal fluctuations play a relevant role here.

On an experimental side, our results are relevant for ...
Ideas for different hairpin constructions where we can mea-
sure �(w) ?
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FIG. 5. Top: Properties of the force correlator for the four re-
gions in Fig. 2. The correlation length ⇢m = C�m(0)/�0

m(0),
with C = �̃m(0)/�̃0

m(0) = 1.36, see Eq. (7). Bottom: The
scaling with m of ⇢m (red, solid), ⇣ = 1.41± 0.10, and �m(0)
(blue dashed), ⇣ = 1.29 ± 0.08. Their mean ⇣ = 1.34 ± 0.06
agrees with the expected value, ⇣ = 4/3.

from the e↵ective sti↵ness of the molecular construct
m2 and the energy parameters of the nearest-neighbour
model in DNA thermodynamics used for DNA melting
curves and secondary structure predictions [24, 25]. We
get experimental values for ⇢m that are within 10% of the
predicted ones: e.g. for region 1, ⇢m ⇡ 27nm (measured)
versus ⇢m ⇡ 29nm (predicted).

It is interesting to compare our unzipping experiment
to the peeling of complementary RNA-DNA strands [7].
Peeling is a highly irreversible process belonging to the
depinning universality class. It is characterized by a sig-
nificantly larger e↵ective sti↵ness m2, and a larger cor-
relation length of about 186 bp as compared to the 26
bp to 77 bp of DNA unzipping. The high energies re-
quired for DNA peeling make the T = 0 nonequilibrium
depinning transition relevant there, whereas for DNA un-
zipping thermal fluctuations occur in equilibrium condi-
tions.

To further test universality, one might consider unzip-
ping hybrid RNA/DNA or RNA molecules, where bind-
ing energies are larger than in DNA [26]. It would also
be interesting to go beyond random sequences by design-
ing DNA sequences with long-range correlations. Finally,
one could consider DNAs with periodically repeated se-
quences, a physical realization of periodic disorder rel-
evant for charge-density waves. Overall, single-molecule
unzipping o↵ers many exciting possibilities to experimen-
tally investigate critical phenomena in random polymers.
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FIG. 1. (a) Schematic illustration of the experimental
setup. (b) Digitized interface, using an Apple scanner with
resolution 300 pixels per inch. The horizontal size of the pa-
per is 20 cm. The function h(x, t ~ oo) was obtained as
the highest dark pixel in column z. (c) Typical result of the
model with width L = 400 and p = p, 0.47.

v4

FIG. 3. Explanation of the model for interface growth
with erosion of overhangs. Wet cells are indicated by shaded
cells. Dry cells are randomly blocked with probability p (in-
dicated by 0) or unblocked with probability 1 —p (indicated
by 1). The interfaces between wet and dry cells are shown by
aheavyline. (a) t=0, (b) t= 1, (c) t=2and(d) t=3.

which support a scaling of the form c(l, 0) l with
o. = 0.63 6 0.04.
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The model we propose is defined as follows: on a square
lattice of edge L (with periodic boundary conditions) we
block a fraction p of the cells to correspond to the inho-
mogeneous nature of the paper towel. At t = 0, we regard
the "interface" to be the bold horizontal line shown in
Fig. 3(a). At t = 1 we randomly choose a cell [labeled X
in Fig. 3(b)] which is one of the unblocked dry cells that
are nearest neighbors to the interface. We wet cell X
and any cells that are below it in the same column. This
process is then iterated. For example, Fig. 3(c) shows
that at t = 2 we choose cell Y a second unblocked cell to
wet, while Fig. 3(d) shows that at t = 3 we wet cell Z
and also cell Z' below it [8].
We find that for p below a critical threshold p, = p, (L)

[9] the interface propagates without stopping, while for
p above p, the interface does not propagate. Figure 2(b)
displays the scaling behavior of the model at criticality,
and we find that n = 0.636 0.02, a value identical to the
experimental value of Fig. 2(a).

FIG. 2. Log-log plots showing the dependence on length
scale E of the height-height correlation function c(E, O) for
(a) the experimental data (averaging over 15 difFerent ex-
periments), and (b) the numerical results (averaging over
1000 different realizations for system size L = 16384 and
for p = 0.469, very close to p, for the infinite system). The
slope for the set of experimental points indicated by solid
circles (two decades) is 0.63 + 0.04, while the slope for the
simulation points indicated by solid circles (three decades) is
0.63 + 0.02.

IV. DISCUSSION
Next we argue that the model presented above is con-

nected to directed percolation [10], thereby providing a
theoretical basis for the observed and calculated values
of the anomalous roughening exponent o.. The propa-
gation of the interface will stop when it reaches for the
Erst time a directed path of blocked cells leading from
West to East—this path is such that one can walk on
it from West to East without turning to the West (see
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The model we propose is defined as follows: on a square
lattice of edge L (with periodic boundary conditions) we
block a fraction p of the cells to correspond to the inho-
mogeneous nature of the paper towel. At t = 0, we regard
the "interface" to be the bold horizontal line shown in
Fig. 3(a). At t = 1 we randomly choose a cell [labeled X
in Fig. 3(b)] which is one of the unblocked dry cells that
are nearest neighbors to the interface. We wet cell X
and any cells that are below it in the same column. This
process is then iterated. For example, Fig. 3(c) shows
that at t = 2 we choose cell Y a second unblocked cell to
wet, while Fig. 3(d) shows that at t = 3 we wet cell Z
and also cell Z' below it [8].
We find that for p below a critical threshold p, = p, (L)

[9] the interface propagates without stopping, while for
p above p, the interface does not propagate. Figure 2(b)
displays the scaling behavior of the model at criticality,
and we find that n = 0.636 0.02, a value identical to the
experimental value of Fig. 2(a).

FIG. 2. Log-log plots showing the dependence on length
scale E of the height-height correlation function c(E, O) for
(a) the experimental data (averaging over 15 difFerent ex-
periments), and (b) the numerical results (averaging over
1000 different realizations for system size L = 16384 and
for p = 0.469, very close to p, for the infinite system). The
slope for the set of experimental points indicated by solid
circles (two decades) is 0.63 + 0.04, while the slope for the
simulation points indicated by solid circles (three decades) is
0.63 + 0.02.

IV. DISCUSSION
Next we argue that the model presented above is con-

nected to directed percolation [10], thereby providing a
theoretical basis for the observed and calculated values
of the anomalous roughening exponent o.. The propa-
gation of the interface will stop when it reaches for the
Erst time a directed path of blocked cells leading from
West to East—this path is such that one can walk on
it from West to East without turning to the West (see

S.V. Buldyrev, et al., Phys. Rev. A 45 (1992) R8313–16.
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i

h

i

h

Figure 60. The cellular automaton model TL92. Blocking cells, i.e. cells
above the threshold are drawn in cyan; those below in white. The initial
configuration is the string at height 1 (dark blue). The interface moves up.
An intermediate configuration is shown in red, the final configuration in
black. Open circles represent unstable points, i.e. points which can move
forward; closed circles are stable.

i=t

h

i=t

h

Figure 61. Simulation of the continuous version of the cellular automaton
model TL92. The continuous configurations (in color) converge reliably
against the directed-percolation solution (black, with filled circles).

unstable(i)
# links cannot be longer than 2
if h(i) � h(neighbor) � 2 return false
# move forward if open
if f

�
i, h(i)

�
> fc return true

# move forward if a neighbor is 2 ahead
if h(neighbor) � h(i) � 2 return true

end

This cellular automaton models a fluid invading a porous
medium. Invasion takes place if a cell is open (second
“if” above), or can be invaded from the side (third “if”).
The process stops if all points (i, h(i)) are stable. As
is illustrated in Fig. 60, this stopped configuration is a
directed path from left to right passing only through blocked
sites, commonly referred to as a directed percolation path.
One can convince oneself that upon stopping the algorithm
yields the lowest-lying directed percolation path. This

d = 1 d = 2 d = 3
⇣ 0.63 [556] 0.45 ?
z 1 [556] 1.15 ± 0.05 [560] 1.36 ± 0.05 [560]

Table 3. The exponents of qKPZ.

can be implemented both for open and periodic boundary
conditions. The latter are chosen in Fig. 60. The
automaton TL92 can straightforwardly be generalized to
higher dimensions [559], but there is a priori no directed
percolation process in the orthogonal direction.

Two continuous equations of motion may be associ-
ated with this surface growth. The first is the (massive)
quenched KPZ equation,

@tu(x, t) = cr2u(x, t) + � [ru(x, t)]2 + m2[w � u(x, t)]

+ F (x, u(x, t)). (659)

This is almost the equation of motion (302) for a disordered
elastic interface; the additional non-linear term proportional
to � is referred to as a KPZ-term, due to its appearance
in the famous KPZ equation of non-linear surface growth
[561]. The latter accounts for the surface growing in its
normal direction, and not in the direction of h. For a
derivation see section 7.1. For an early reference see [562].
In the present context it was first observed in simulations
[563], where an increase in the drift-velocity was found
upon tilting the interface.

The second model one can associate with the
automaton TL92 is depinning of an elastic interface.
As TL92 makes no distinction between nearest-neighbor
distances 0 or ±1, has strong interactions at distance 2, and
forbids larger distances, the corresponding elastic energy
Hel[u] must be strongly anharmonic. Our choice is (with
u(L + 1) = u(1))

Hel[u] =
LX

i=1

Eel

�
u(i) � u(i + 1)

�
, (660)

Eel(u) =

⇢
0 , u  1

1

24
(u2 � 1)2 , |u| > 1.

(661)

This implies an elastic nearest-neighbor force

fel(u) := �@uEel(u) =

⇢
0 , u  1

� 1

6
u(u2 � 1) , |u| > 1

(662)

It evaluates to �1 at u = 2, which is sufficient to overcome
any obstacle; and to �4 at u = 3, making the latter
unattainable. The full equation of motion for site i then
reads

@tu(i, t) = fel

�
u(i, t)�u(i+1, t)

�
+fel

�
u(i, t)�u(i�1, t)

�

+F (i, u(i, t)). (663)

The last term is the disorder force, which we choose to be
f(i, j) if u is within � close to j. Thus disorder acts as an
obstacle close to an integer h. To mimic TL92, we wish the

Theory and Experiments for Disordered Elastic Manifolds, Depinning, Avalanches, and Sandpiles 78

i

h

i

h

Figure 60. The cellular automaton model TL92. Blocking cells, i.e. cells
above the threshold are drawn in cyan; those below in white. The initial
configuration is the string at height 1 (dark blue). The interface moves up.
An intermediate configuration is shown in red, the final configuration in
black. Open circles represent unstable points, i.e. points which can move
forward; closed circles are stable.
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Figure 61. Simulation of the continuous version of the cellular automaton
model TL92. The continuous configurations (in color) converge reliably
against the directed-percolation solution (black, with filled circles).

unstable(i)
# links cannot be longer than 2
if h(i) � h(neighbor) � 2 return false
# move forward if open
if f

�
i, h(i)

�
> fc return true

# move forward if a neighbor is 2 ahead
if h(neighbor) � h(i) � 2 return true

end

This cellular automaton models a fluid invading a porous
medium. Invasion takes place if a cell is open (second
“if” above), or can be invaded from the side (third “if”).
The process stops if all points (i, h(i)) are stable. As
is illustrated in Fig. 60, this stopped configuration is a
directed path from left to right passing only through blocked
sites, commonly referred to as a directed percolation path.
One can convince oneself that upon stopping the algorithm
yields the lowest-lying directed percolation path. This

d = 1 d = 2 d = 3
⇣ 0.63 [556] 0.45 ?
z 1 [556] 1.15 ± 0.05 [560] 1.36 ± 0.05 [560]

Table 3. The exponents of qKPZ.

can be implemented both for open and periodic boundary
conditions. The latter are chosen in Fig. 60. The
automaton TL92 can straightforwardly be generalized to
higher dimensions [559], but there is a priori no directed
percolation process in the orthogonal direction.

Two continuous equations of motion may be associ-
ated with this surface growth. The first is the (massive)
quenched KPZ equation,

@tu(x, t) = cr2u(x, t) + � [ru(x, t)]2 + m2[w � u(x, t)]

+ F (x, u(x, t)). (659)

This is almost the equation of motion (302) for a disordered
elastic interface; the additional non-linear term proportional
to � is referred to as a KPZ-term, due to its appearance
in the famous KPZ equation of non-linear surface growth
[561]. The latter accounts for the surface growing in its
normal direction, and not in the direction of h. For a
derivation see section 7.1. For an early reference see [562].
In the present context it was first observed in simulations
[563], where an increase in the drift-velocity was found
upon tilting the interface.

The second model one can associate with the
automaton TL92 is depinning of an elastic interface.
As TL92 makes no distinction between nearest-neighbor
distances 0 or ±1, has strong interactions at distance 2, and
forbids larger distances, the corresponding elastic energy
Hel[u] must be strongly anharmonic. Our choice is (with
u(L + 1) = u(1))

Hel[u] =
LX

i=1

Eel

�
u(i) � u(i + 1)

�
, (660)

Eel(u) =

⇢
0 , u  1

1

24
(u2 � 1)2 , |u| > 1.

(661)

This implies an elastic nearest-neighbor force

fel(u) := �@uEel(u) =

⇢
0 , u  1

� 1

6
u(u2 � 1) , |u| > 1

(662)

It evaluates to �1 at u = 2, which is sufficient to overcome
any obstacle; and to �4 at u = 3, making the latter
unattainable. The full equation of motion for site i then
reads

@tu(i, t) = fel

�
u(i, t)�u(i+1, t)

�
+fel

�
u(i, t)�u(i�1, t)

�

+F (i, u(i, t)). (663)

The last term is the disorder force, which we choose to be
f(i, j) if u is within � close to j. Thus disorder acts as an
obstacle close to an integer h. To mimic TL92, we wish the

The Tang-Leschhorn cellular automaton of 1992
TL92

variants: Buldyrev, S. Havlin and H.E. Stanley1992
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above the threshold are drawn in cyan; those below in white. The initial
configuration is the string at height 1 (dark blue). The interface moves up.
An intermediate configuration is shown in red, the final configuration in
black. Open circles represent unstable points, i.e. points which can move
forward; closed circles are stable.
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Figure 61. Simulation of the continuous version of the cellular automaton
model TL92. The continuous configurations (in color) converge reliably
against the directed-percolation solution (black, with filled circles).

unstable(i)
# links cannot be longer than 2
if h(i) � h(neighbor) � 2 return false
# move forward if open
if f

�
i, h(i)

�
> fc return true

# move forward if a neighbor is 2 ahead
if h(neighbor) � h(i) � 2 return true

end

This cellular automaton models a fluid invading a porous
medium. Invasion takes place if a cell is open (second
“if” above), or can be invaded from the side (third “if”).
The process stops if all points (i, h(i)) are stable. As
is illustrated in Fig. 60, this stopped configuration is a
directed path from left to right passing only through blocked
sites, commonly referred to as a directed percolation path.
One can convince oneself that upon stopping the algorithm
yields the lowest-lying directed percolation path. This

d = 1 d = 2 d = 3
⇣ 0.63 [556] 0.45 ?
z 1 [556] 1.15 ± 0.05 [560] 1.36 ± 0.05 [560]

Table 3. The exponents of qKPZ.

can be implemented both for open and periodic boundary
conditions. The latter are chosen in Fig. 60. The
automaton TL92 can straightforwardly be generalized to
higher dimensions [559], but there is a priori no directed
percolation process in the orthogonal direction.

Two continuous equations of motion may be associ-
ated with this surface growth. The first is the (massive)
quenched KPZ equation,

@tu(x, t) = cr2u(x, t) + � [ru(x, t)]2 + m2[w � u(x, t)]

+ F (x, u(x, t)). (659)

This is almost the equation of motion (302) for a disordered
elastic interface; the additional non-linear term proportional
to � is referred to as a KPZ-term, due to its appearance
in the famous KPZ equation of non-linear surface growth
[561]. The latter accounts for the surface growing in its
normal direction, and not in the direction of h. For a
derivation see section 7.1. For an early reference see [562].
In the present context it was first observed in simulations
[563], where an increase in the drift-velocity was found
upon tilting the interface.

The second model one can associate with the
automaton TL92 is depinning of an elastic interface.
As TL92 makes no distinction between nearest-neighbor
distances 0 or ±1, has strong interactions at distance 2, and
forbids larger distances, the corresponding elastic energy
Hel[u] must be strongly anharmonic. Our choice is (with
u(L + 1) = u(1))

Hel[u] =
LX

i=1

Eel

�
u(i) � u(i + 1)

�
, (660)

Eel(u) =

⇢
0 , u  1

1

24
(u2 � 1)2 , |u| > 1.

(661)

This implies an elastic nearest-neighbor force

fel(u) := �@uEel(u) =

⇢
0 , u  1

� 1

6
u(u2 � 1) , |u| > 1

(662)

It evaluates to �1 at u = 2, which is sufficient to overcome
any obstacle; and to �4 at u = 3, making the latter
unattainable. The full equation of motion for site i then
reads

@tu(i, t) = fel

�
u(i, t)�u(i+1, t)

�
+fel

�
u(i, t)�u(i�1, t)

�

+F (i, u(i, t)). (663)

The last term is the disorder force, which we choose to be
f(i, j) if u is within � close to j. Thus disorder acts as an
obstacle close to an integer h. To mimic TL92, we wish the

Anharmonic depinning = TL92

anharmonic depinning respects the Middleton theorem 
= return point memory (not guaranteed for qKPZ)

ℰel = ∑
i

c4

4
(ui − ui+1)4



TL92 and directed percolation (d = 1)

fc := m2(u − w)

u

x0

used for driving



1
2

[u(x) − u(y)]2 ∼ {A |x − y |2ζ , |x − y | < ξ
B m−2ζm, |x − y | > ξ

2-point function

8

known precisely [5, 50, 51], we get precise predictions for the
former.

There are two guiding principles for these relations: all
forces at depinning have the same scaling dimension, and ev-
ery length parallel to the interface scales as x or ⇠m, while
lengths in the perpendicular direction scale as u ⇠ x⇣ ⇠
m�⇣m .

Consider Fig. 4 which shows directed-percolation paths
from left to right (in pink). They are constructed on a square
lattice, where occupied cells (in pink or cyan) are selected
with probability p, and the remaining once are unoccupied
(white). A cell (i, j) is said to be connected to the left bound-
ary (and colored pink) if it is occupied, and if at least one of
its three neighbors (i � 1, j) and (i � 1, j ± 1) is connected
to the left boundary. The system is said to percolate, if at least
one point on the right boundary is connected to the the left
boundary. To achieve periodic boundary conditions for TL92,
we further ask that this remains true for the periodically con-
tinued system.

While percolation is unlikely for small p, it is likely for
large p, with a transition at p = pc. There are three indepen-
dent exponents �, ⌫k, and ⌫?, defined via

⇢(t) :=

*
1

h

X

u

su(t)

+
t!1�! ⇢stat (29)

⇢stat ⇠ (p� pc)
� , p > pc, (30)

⇠k = |p� pc|�⌫k , (31)

⇠? = |p� pc|�⌫? . (32)

Here su(t) is the activity of site u at time t, set to one if
the site is connected to the left boundary, and zero otherwise.
h =

P
u is the height of the system, and ⇢stat the stationnary

density of active sites. ⇠k is the size of the DP cluster along
the parallel (time) direction, and ⇠? the size in the transverse
direction. The last two relations imply

⇠? ⇠ ⇠⇣k =) ⇣d=1 =
⌫?
⌫k

= 0.632613(3). (33)

This is the roughness exponent ⇣ defined in Eq. (27). All nu-
merical values are collected in table V.

For TL92, the surface is blocked by directed percolation
paths in the direction parallel to the interface (from left to
right). As a result, the distance to pc in DP corresponds to
a driving force in TL92 as p � pc = m2(u � w). Together
with u ' ⇠? ⇠ (p� pc)�⌫? , this gives m2 ⇠ (p� pc)1+⌫? ,
or (p� pc) ⇠ m

2
1+⌫? . This finally yields

u ⇠ m�⇣m =) ⇣d=1
m =

2⌫?
1 + ⌫?

= 1.046190(4). (34)

Note that in contrast to qEW ⇣m > ⇣.
In d � 2 directed-percolation paths are 1-dimensional,

whereas the interface is d-dimensional. As a result, the map-
ping breaks down and one has to introduce directed surfaces
[52]. Since no information for our simulations is gained, we
will not discuss this case.

FIG. 5. TL92 1d (left) 2-point function C(x) for different values
of m (not all shown here), plotted against x0 = 4x(L�x)

L to take
advantage of the periodic boundary conditions. We read off the ex-
ponent ⇣ = 0.636 in the linear part of the curve. (right) Scaling
of the plateau of the 2-point functions for different m.The fit yields
⇣m = 1.052.

FIG. 6. TL92 2d (left) 2-point function C(x) along the diagonal of
the system for different values of m (not all shown) plotted against
x0 = 4x

p
2(L

p
2�x

p
2)p

2L
. The exponent ⇣ ⇡ 0.47 is obtained from the

linear part of the curve. (right) Scaling of the plateau of the 2-point
functions for different m. The fit yields ⇣m = 0.70.

C. Results for the 2-point function, ⇣ and ⇣m

For TL92 in d = 1, the 2-point function is shown on Fig. 5.
d = 2 is covered in Figs. 6-7, while Fig. 8 is for dimension
d = 3. The results for the critical exponents ⇣ and ⇣m are
summarized in Table IV.

Let us first discuss our choice of simulation parameters. To
obtain ⇣, the smallest possible m is chosen, such that there
is no system-spanning avalanche. The latter would mix the
physics of the d-dimensional interface with that of a single

ζd=1 =
ν⊥

ν∥
= 0.632613(3)

from directed percolation

ζd=1
m =

2ν⊥

1 + ν⊥
= 1.046190(4)

ζm > ζ

two distinct exponents in all d



What is the appropriate long-distance theory?
Can we measure it?

η∂tu(x, t) = c∇2u(x, t) + c4 ∇[∇u(x, t)]3 − m2[u(x, t) − w]

+F(x, u(x, t))

standard elasticity non-linear elasticity

disorder force

background field

confining potential

c → 0



What is the appropriate long-distance theory?
Can we measure it?

η∂tu(x, t) = c∇2u(x, t) + c4 ∇[∇u(x, t)]3 − m2[u(x, t) − w(x, t)]

+λ[∇u(x, t)]2 + F(x, u(x, t))

standard elasticity non-linear elasticity

KPZ term disorder force

background field

confining potential

c > 0

(unrenormalized)

(modulated)



Measuring the elastic constants for 
harmonic depinning (qEW)

13

FIG. 13. We drive the interface with a spatially modulated driving.
The continuous black line is the interface with blue dots representing
sites

with Eq. (28)

 c = 2
⇣m � ⇣

⇣
. (64)

A similar argument for � yields

 � = 2
⇣m � ⇣

⇣
� ⇣m. (65)

These two relations have been verified (see left of Fig. 15),
thanks to the algorithm we describe in Sec. V E.

The scaling relation for  ⌘ is obtained from ⌘@tu ⇠ m2u,
implying t ⇠ m�2� ⌘ ⇠ x(2+ ⌘)⇣/⇣m . This yields

 ⌘ = z
⇣m
⇣

� 2. (66)

E. An algorithm to measure the effective coupling constants

In order to obtain the effective � one can tilt the system and
measure the change in depinning force as in [58]. In contrast,
the effective elasticity c has to our best knowledge never been
measured. Since the field theory in Ref. [42] did not deliver
an FRG fixed point for the ratio �/c, we decided to check
numerically whether such a fixed point exists, and to extract
as much information as possible to constrain the field theory.

Our algorithm to achieve this is simple: measure the re-
sponse of the interface to perturbation, sinusoidal in space,
and constant in time. This is achieved by driving the system
with a spatially modulated background field w(x), see Fig. 13,

w(x) = w0 +A sin

✓
f
2⇡x

L

◆
. (67)

After each avalanche, we increase w(x) by �w (a constant),
w(x) ! w(x) + �w. We focus on the slowest mode f = 1.
We then measure the mean interface profile u(x). Varying the
amplitude A of the driving, we fit the response with a poly-
nomials in A. The effective parameters are then linked to
the projections on these modes. To be specific, write, with

` := L/2⇡ :

u(x) = u0(A) + u1(A) sin
⇣x
`

⌘
+ u2(A) cos

✓
2x

`

◆
+ ...

(68)
u0(A) = 0u0 +

2u0A
2 +O(A4), (69)

u1(A) = 1u1A+O(A3), (70)
u2(A) = 2u2A

2 +O(A4). (71)

The dots represent higher-order terms in A, while the double-
indexed u’s are numbers to be measured. The lower index
represents the mode, while the upper index is the order in A.
We inject this development into the noiseless KPZ equation

�m2u+ cr2u+ �(ru)2 = �m2A sin
⇣x
`

⌘
. (72)

It is the non-linear term in the qKPZ equation that generates
the higher harmonics. The parity of the number of derivatives
restricts the allowed modes to those in Eq. (68). Matching
coefficients, we find

0u0 = w0 (73)

1u1 =
m2

m2 + c
`2
, (74)

2u0 =
m2�

4`2(m2 + c
`2 )

2
, (75)

2u2 =
m4�

4`2(m2 + 4c
`2 )(m

2 + c
`2 )

2
. (76)

These relations are inverted to obtain � and c,

c(m) = m2`2
1� 1u1

1u1
, (77)

�(m) = 4m2`2
2u0

(1u1)2
. (78)

F. Checks and results

Let us start with some checks of our procedure for qEW.
There �(m) ⌘ 0, and there is no renormalization of c, as it is
protected by the statistical-tilt symmetry [4? ]. In Fig. 14 we
show simulations for harmonic depinning (Eq. (6) with c4 = 0
and c2 = 1). While � = 0, we measured the effective elastic
constant c does not renormalize and stays at c = 1 .

We next apply our procedure to TL92 and anharmonic de-
pinning in d = 1, see Fig. 15. For each m, the polynomials
were fitted on 100 different values for A, and each value of A
corresponds to a simulation of 105 independent samples. The
size varies from L = 512 to L = 2048, since for larger values
of m smaller systems are sufficient. We find

 d=1
c = 1.31± 0.04, (79)

 d=1
� = 0.28± 0.03, (80)

in agreement with their expressions in Eqs. (64)-(65), and the
numerical values given in table V.

14

FIG. 14. Computation of the effective c and � for the qEW equation.
Apart from large m, the effective elasticity c is unrenormalized, as
predicted by Statistical Tilt Symmetry. The measured non-linearity
� vanishes.

FIG. 15. Left: Scaling of c and � for anharmonic depinning in
1d. Right: Measured amplitude ratios A for TL92 and anharmonic
depinning. The second-order polynomial fits show convergence to
A ⇡ 1.10(2) for m ! 0.

We checked that higher-order relations (given in Appendix
B) give the same results. We further checked that the results
given for � are the same as those obtained as a response to
a tilt. (Note that to introduce a tilt with our driving protocol,
one has to tilt both the driving potential and the interface.).

The determination of the effective parameters � and c is not
the only application of this algorithm: one could measure the
effective decay of subleading parameters present at the begin-
ning of the flow, such as c4, and obtain valuable information
on the crossover to the qKPZ universality class. This could

be helpful for experiments and is summarized in Appendix B.
This technique is mostly limited by computer resources.

G. The universal amplitude ratio A

An important question is whether qKPZ is the proper large-
distance description of TL92, anharmonic depinning, and it-
self. To ensure this the properly renormalized non-linearity �
needs to flow to a fixed point. This is achieved by defining the
universal amplitude ratio A as

A :=
�(0)

|�0(0+)|
�

c
. (81)

The idea behind this construction is that if both � and c are
relevant, then

� [ru(x, t)]2 ⇠ cr2u(x, t) =) �

c
⇠ 1

u
(82)

On the other hand �(u) ⇠ u�0(u); taking the limit of
u ! 0 there allows to define the dimensionless quantity A
in Eq. (81). As a consequence, if the qKPZ equation is the
effective field theory in the limit of m ! 0, then the ratio A
needs to converge against the universal limit set by the qKPZ
field theory. That this is indeed the case can be seen on Fig. 15.
In the two models simulated, the amplitude ratio converges to
the same value,

Ad=1 = 1.10(2). (83)

VI. CONCLUSION

We showed through theoretical arguments and numerical
checks, that anharmonic depinning, qKPZ and the cellular au-
tomaton TL92 are in the same universality class, the qKPZ
universality class. We then elucidated the scaling relations for
driving through a parabolic confining potential. This allowed
us to understand statics and dynamics of our system. Finally
we developed an algorithm to measure the renormalized (ef-
fective) coefficients of the continuity equation. This will be
useful to constrain, and finally construct [44] the field theory
presented in a sequel of this work.

We believe that our technique to extract the effective cou-
pling constants by measuring the static response of the system
under spatially modulated perturbations may yield important
information in other systems that lack a proper field theoretic
description. We started to extend it to the KPZ equation itself.
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with Eq. (28)
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⇣
. (64)

A similar argument for � yields

 � = 2
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⇣
� ⇣m. (65)

These two relations have been verified (see left of Fig. 15),
thanks to the algorithm we describe in Sec. V E.

The scaling relation for  ⌘ is obtained from ⌘@tu ⇠ m2u,
implying t ⇠ m�2� ⌘ ⇠ x(2+ ⌘)⇣/⇣m . This yields

 ⌘ = z
⇣m
⇣

� 2. (66)

E. An algorithm to measure the effective coupling constants

In order to obtain the effective � one can tilt the system and
measure the change in depinning force as in [58]. In contrast,
the effective elasticity c has to our best knowledge never been
measured. Since the field theory in Ref. [42] did not deliver
an FRG fixed point for the ratio �/c, we decided to check
numerically whether such a fixed point exists, and to extract
as much information as possible to constrain the field theory.

Our algorithm to achieve this is simple: measure the re-
sponse of the interface to perturbation, sinusoidal in space,
and constant in time. This is achieved by driving the system
with a spatially modulated background field w(x), see Fig. 13,

w(x) = w0 +A sin
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◆
. (67)

After each avalanche, we increase w(x) by �w (a constant),
w(x) ! w(x) + �w. We focus on the slowest mode f = 1.
We then measure the mean interface profile u(x). Varying the
amplitude A of the driving, we fit the response with a poly-
nomials in A. The effective parameters are then linked to
the projections on these modes. To be specific, write, with

` := L/2⇡ :

u(x) = u0(A) + u1(A) sin
⇣x
`

⌘
+ u2(A) cos
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`

◆
+ ...

(68)
u0(A) = 0u0 +

2u0A
2 +O(A4), (69)

u1(A) = 1u1A+O(A3), (70)
u2(A) = 2u2A

2 +O(A4). (71)

The dots represent higher-order terms in A, while the double-
indexed u’s are numbers to be measured. The lower index
represents the mode, while the upper index is the order in A.
We inject this development into the noiseless KPZ equation

�m2u+ cr2u+ �(ru)2 = �m2A sin
⇣x
`

⌘
. (72)

It is the non-linear term in the qKPZ equation that generates
the higher harmonics. The parity of the number of derivatives
restricts the allowed modes to those in Eq. (68). Matching
coefficients, we find

0u0 = w0 (73)

1u1 =
m2

m2 + c
`2
, (74)
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2
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c(m) = m2`2
1� 1u1

1u1
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F. Checks and results

Let us start with some checks of our procedure for qEW.
There �(m) ⌘ 0, and there is no renormalization of c, as it is
protected by the statistical-tilt symmetry [4? ]. In Fig. 14 we
show simulations for harmonic depinning (Eq. (6) with c4 = 0
and c2 = 1). While � = 0, we measured the effective elastic
constant c does not renormalize and stays at c = 1 .

We next apply our procedure to TL92 and anharmonic de-
pinning in d = 1, see Fig. 15. For each m, the polynomials
were fitted on 100 different values for A, and each value of A
corresponds to a simulation of 105 independent samples. The
size varies from L = 512 to L = 2048, since for larger values
of m smaller systems are sufficient. We find

 d=1
c = 1.31± 0.04, (79)

 d=1
� = 0.28± 0.03, (80)

in agreement with their expressions in Eqs. (64)-(65), and the
numerical values given in table V.

Measuring the elastic 
constants

anharmonic depinning ( )c4 > 0
5

FIG. 4. Left: Effective c and � for anharmonic depinning. Right:
Convergence to the fixed point as m ! 0, both for anharmonic de-
pinning and TL92.

FIG. 5. The 1-loop corrections to c.

A. Reminder: Generation of KPZ term from anharmonic
elasticity

Let us remind how anharmonic elastic terms generate a
KPZ term at depinning [33]: To this purpose consider a stan-
dard elastic energy, supplemented by an additional anhar-
monic (quartic) term (setting c = 1 for simplicity),

Hel[u] =

Z

x

1

2
[ru(x)]2 +

c4
4

h
(ru(x))2

i2
. (33)

The corresponding terms in the equation of motion read

@tu(x, t) = r2u(x, t) + c4r
n
ru(x, t) [ru(x, t)]2

o

+... (34)

Since the r.h.s. of Eq. (34) is a total derivative, it is surprising
that a KPZ-term can be generated in the limit of a vanishing
driving velocity. This puzzle was solved in Ref. [33], where
the KPZ term arises by contracting the non-linearity with one

FIG. 6. 1-loop diagrams correcting �.

disorder,

�� =

t’

k p

0

t

= � c4
p2

Z

t>0

Z

t0>0

Z

k
e�(t+t0)(k2+m2)

�
k2p2 + 2(kp)2

�

⇥�0�u(x, t+ t0)� u(x, 0)
�
. (35)

As u(x, t+ t0)�u(x, 0) � 0, the leading term in Eq. (35) can
be written as

�� = � c4
p2

Z

t

Z

t0

Z

k
e�(t+t0)(k2+m2)

�
k2p2+2(kp)2

�
�0(0+).

(36)

Integrating over t, t0 and using the radial symmetry in k yields

�� = �c4

✓
1 +

2

d

◆Z

k

�0(0+)k2

(k2 +m2)2
. (37)

This shows that in the FRG a KPZ term is generated from the
non-linearity. As ��0(0+) > 0, its amplitude is positive. The
integral (37) has a strong UV divergence, thus the generation
of this term happens at small scales, similar to the generation
of the critical force, see appendix A 3.

B. 1-loop contributions

Here we summarize the 1-loop contributions to c, �, ⌘ and
�. This is almost the same calculation as in Ref. [33], with
a little twist: Since we work in a massive scheme, many of
the cancelations in [33] no longer exist. We remind that this
change in scheme was forced upon us by our decision to mea-
sure the effective parameters of the theory, necessitating to
drive with a confining potential. We believe that this is also
much closer to real experiments. The diagrams from the per-
turbation in � are given in Figs. 5-7.

We obtain the same equations but with coefficients ai that
differ from [33] away from the upper critical dimension. The
explicit calculations are given in appendix A. Terms with nu-
merical coefficients only (no ai) are those appearing already

λ

c
ln c

ln λ

c4

m
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FIG. 12. (Left) Correlators in d = 1 from simulations of harmonic depinning (qEW) and anharmonic depinning (in the qKPZ universality
class), compared to the analytic solution of the flow equations. �(w) for anharmonic depinning decays slightly faster than the one for harmonic
depinning. The correlators are rescaled such that �(0) = |�0(0+)| = 1. (Right) Difference of the rescaled correlators measured or analytical.
We see that the qKPZ FRG one loop solution is around 3 time closer to the numerical simulation than qEW one-loop to his, highlighting the
efficiency of our procedure.

FIG. 13. (Left) Correlators in d = 2 from simulations of harmonic
depinning (qEW) and anharmonic depinning (qKPZ class), com-
pared to the solution of the FRG flow equations. The FRG solution is
much closer to anharmonic depinning than to qEW. The correlators
are rescaled such that �(0) = |�0(0+)| = 1. (Right) Difference
of the rescaled correlators measured and analytical. The agreement
between simulations and theory is of the same order of magnitude
for the two universality class, even if the qKPZ theory is much more
sophisticated.

d = 2, and d = 3, we constructed a consistent theory. The

crucial ingredient is a flow-equation for the KPZ non-linearity,
which is controlled in dimension d. Behind this feature lies
the observation that all field theories for qEW with SR or LR
elasticity, as well as qKPZ merge into a single theory in di-
mension d = 0. Our theory has predictive powers as long
as we have a sufficient knowledge of the qEW fixed point in
small dimensions, and we are not too far away from d = 0.
We derived several bounds, respected in low dimensions, but
violated in dimension d = 3; there we currently can only close
our scheme with an adhoc assumption.

We hope that our method of first measuring the effective
theory in a simulation, before attempting to build a field the-
ory, can serve in other contexts as well, as e.g. fully devel-
oped turbulence. Applying our approach to other growth ex-
periments in d = 2 for which no theory is available seems
promising. We hope it will also shed light on the problems in
the standard (thermal) KPZ equation in higher dimensions.
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Δ(w − w′�)
= m4Ld(uw − w)(uw′� − w′�)c

uw =
1
Ld ∫x

uw(x)

centre-of-mass position
given w d = 1

ρ
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FIG. 14. Computation of the effective c and � for the qEW equation.
Apart from large m, the effective elasticity c is unrenormalized, as
predicted by Statistical Tilt Symmetry. The measured non-linearity
� vanishes.

FIG. 15. Left: Scaling of c and � for anharmonic depinning in
1d. Right: Measured amplitude ratios A for TL92 and anharmonic
depinning. The second-order polynomial fits show convergence to
A ⇡ 1.10(2) for m ! 0.

We checked that higher-order relations (given in Appendix
B) give the same results. We further checked that the results
given for � are the same as those obtained as a response to
a tilt. (Note that to introduce a tilt with our driving protocol,
one has to tilt both the driving potential and the interface.).

The determination of the effective parameters � and c is not
the only application of this algorithm: one could measure the
effective decay of subleading parameters present at the begin-
ning of the flow, such as c4, and obtain valuable information
on the crossover to the qKPZ universality class. This could

be helpful for experiments and is summarized in Appendix B.
This technique is mostly limited by computer resources.

G. The universal amplitude ratio A

An important question is whether qKPZ is the proper large-
distance description of TL92, anharmonic depinning, and it-
self. To ensure this the properly renormalized non-linearity �
needs to flow to a fixed point. This is achieved by defining the
universal amplitude ratio A as

A :=
�(0)

|�0(0+)|
�

c
. (81)

The idea behind this construction is that if both � and c are
relevant, then

� [ru(x, t)]2 ⇠ cr2u(x, t) =) �

c
⇠ 1

u
(82)

On the other hand �(u) ⇠ u�0(u); taking the limit of
u ! 0 there allows to define the dimensionless quantity A
in Eq. (81). As a consequence, if the qKPZ equation is the
effective field theory in the limit of m ! 0, then the ratio A
needs to converge against the universal limit set by the qKPZ
field theory. That this is indeed the case can be seen on Fig. 15.
In the two models simulated, the amplitude ratio converges to
the same value,

Ad=1 = 1.10(2). (83)

VI. CONCLUSION

We showed through theoretical arguments and numerical
checks, that anharmonic depinning, qKPZ and the cellular au-
tomaton TL92 are in the same universality class, the qKPZ
universality class. We then elucidated the scaling relations for
driving through a parabolic confining potential. This allowed
us to understand statics and dynamics of our system. Finally
we developed an algorithm to measure the renormalized (ef-
fective) coefficients of the continuity equation. This will be
useful to constrain, and finally construct [44] the field theory
presented in a sequel of this work.

We believe that our technique to extract the effective cou-
pling constants by measuring the static response of the system
under spatially modulated perturbations may yield important
information in other systems that lack a proper field theoretic
description. We started to extend it to the KPZ equation itself.
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FIG. 12. (Left) Correlators in d = 1 from simulations of harmonic depinning (qEW) and anharmonic depinning (in the qKPZ universality
class), compared to the analytic solution of the flow equations. �(w) for anharmonic depinning decays slightly faster than the one for harmonic
depinning. The correlators are rescaled such that �(0) = |�0(0+)| = 1. (Right) Difference of the rescaled correlators measured or analytical.
We see that the qKPZ FRG one loop solution is around 3 time closer to the numerical simulation than qEW one-loop to his, highlighting the
efficiency of our procedure.

FIG. 13. (Left) Correlators in d = 2 from simulations of harmonic
depinning (qEW) and anharmonic depinning (qKPZ class), com-
pared to the solution of the FRG flow equations. The FRG solution is
much closer to anharmonic depinning than to qEW. The correlators
are rescaled such that �(0) = |�0(0+)| = 1. (Right) Difference
of the rescaled correlators measured and analytical. The agreement
between simulations and theory is of the same order of magnitude
for the two universality class, even if the qKPZ theory is much more
sophisticated.

d = 2, and d = 3, we constructed a consistent theory. The

crucial ingredient is a flow-equation for the KPZ non-linearity,
which is controlled in dimension d. Behind this feature lies
the observation that all field theories for qEW with SR or LR
elasticity, as well as qKPZ merge into a single theory in di-
mension d = 0. Our theory has predictive powers as long
as we have a sufficient knowledge of the qEW fixed point in
small dimensions, and we are not too far away from d = 0.
We derived several bounds, respected in low dimensions, but
violated in dimension d = 3; there we currently can only close
our scheme with an adhoc assumption.

We hope that our method of first measuring the effective
theory in a simulation, before attempting to build a field the-
ory, can serve in other contexts as well, as e.g. fully devel-
oped turbulence. Applying our approach to other growth ex-
periments in d = 2 for which no theory is available seems
promising. We hope it will also shed light on the problems in
the standard (thermal) KPZ equation in higher dimensions.
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Universality classes for depinning
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−m∂mλ̃ = ζmλ̃ −
4 − d

6
λ̃3Δ̃(0) ⟹ λ̃c =

6ζm

(4 − d)Δ̃(0)

FRG flow equations

∂ℓΔ̃(u) = (4 − d
ζm

ζ
− 2ζm) Δ̃(u) + uζmΔ̃′ �(u)

+
d(d + 2)

12
λ̃2Δ̃(u)2 − Δ̃′�(u)2 − Δ̃′�′�(u)[Δ̃(u) − Δ̃(0)]

ζm

ζ
= 1 +

1
2 [−λ̃Δ̃′�(0+) −

d − 1
3

λ̃2Δ̃(0)] .

Flow of the disorder for qKPZ
shooting parameter

replace ζm/ζ

flow for   (with confining potential, i.e. massive theory)λ
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The anomalous dimension  c defined in Eq. (10) reads

 c = ��̃�̃0(0+)� d� 1

3
�̃2�̃(0). (55)

Using Eq. (14), we find

⇣m
⇣

= 1 +
1

2


��̃�̃0 �0+

�
� d� 1

3
�̃2�̃(0)

�
. (56)

Eq. (51) is still cumbersome to solve. Reinjecting Eq. (56),
we obtain at the fixed point

0 =

✓
"+

d

2


�̃�̃0 �0+

�
+

d� 1

3
�̃2�̃(0)

�
� 2⇣m

◆
�̃(u)

+u⇣m�̃0(u) +
d(d+ 2)

12
�̃2�̃(u)2

��̃0(u)2 � �̃00(u)
⇥
�̃(u)� �̃(0)

⇤
. (57)

The anomalous contribution  ⌘ reads

 ⌘ = �

d

4
�̃�̃0 �0+

�
+ �̃00 �0+

��
. (58)

Using Eq. (16) this yields

z =
⇣

⇣m


2� d

4
�̃�̃0 �0+

�
� �̃00 �0+

��
. (59)

We note that for d ! 0 the contribution of �̃ in equation (57)
disappears, thus we recover the qEW fixed point. This is not
the case in the massless scheme [33]. Increasing d we expect
the qKPZ fixed point to smoothly move away from the qEW
one. In Figure 12 we show that in dimension d = 1 the shape
of the measured �(w) for qEW and qKPZ are close, even
though their amplitudes may be rather different. We take this
as an encouraging sign to construct the FRG fixed point for
qKPZ. This is the task of section III E. Before doing so, we
derive constraints to be satisfied by the fixed point.

D. Necessary conditions for a fixed point, and bounds

1. Disorder relevant

In order to find a fixed point, we now assume (as in qEW)
that the disorder is relevant, thus 4 � d ⇣m⇣ � 2⇣m > 0. This
is satisfied in d = 1, but only marginally, see table I. There
one finds 4� d ⇣m⇣ � 2⇣m = 0.253859. Maybe not surprising,
since in d = 0 (qEW) one gets 4 � 2⇣m = 4 � 2 ⇥ 2� ⇡ 0.
In d = 1 qEW has 4� 1� 2⇥ 5/4 = 0.5.

Taking the limit of u ! 0 in Eq. (57), we obtain a soft
bound at 1-loop order,

|�̃0(0+)| >
r

d(d+ 2)

12
�̃�̃(0). (60)

When violated, the rescaling term becomes negative, and we
expect the effective disorder to disappear at large scales. Us-
ing the definition of the universal amplitude A in Eq. (31), we

ζm/ϵ

λ


ζm

ζk
-1

/4

Δ

''(0)

dimΔ/ϵ
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FIG. 8. In d = 1: The 1-loop contributions ⇣m/", amplitude ratio
A and ⇣m/⇣ � 1 as a function of �̃. Setting d = 1 in the flow
equations. The orange shaded range is excluded by demanding that
� is relevant, the cyan line is the location of the fixed point for �̃.
The red dashed line is the bound on A from A�

c = Afc
c . (see section

III D 3)

can rewrite the bound (60) as1

A < A�
c =

s
12

d(d+ 2)
=

8
<

:

2 in d = 1
1.22 in d = 2
0.894 in d = 3

. (61)

2. ⇣m > ⇣

We further expect a positive contribution to the renormal-
ization of c. Demanding that  c > 0, Eq. (56) yields

�̃⇥

�̃0(0+) +

d� 1

3
�̃�̃(0)

�
< 0. (62)

This can be rewritten as

A < A c
c =

3

d� 1
. (63)

3. Positive pinning force

The last condition is that the critical force at depinning
needs to be negative (keeping us pinned), equivalent to a neg-
ative square bracket in Eq. (47). In terms of A, this results
in

A  Afc
c =

2

d
. (64)

We find that in 1  d  4 the strongest bound is Afc
c for the

critical force, followed by the one for �(w) and  c,

A < Afc
c  A�

c < A c
c . (65)

It would be interesting to continue this to 2-loop order.

1 Note that the definition (31) for A remains unchanged upon replacing all
quantities by their dimensionless analogue, noted with a tilde.

Solution in d = 1

λ̃c

needs to be positive
(disorder relevant)

 (critical force positive)𝒜 < 2

ζd=1
m = 0.86

ζd=1 = 0.69
zd=1 = 1.27

𝒜d=1 = 1.27

RG:

ζd=1
m = 1.05

ζd=1 = 0.63
zd=1 = 1.10(2)

𝒜d=1 = 1.10(2)

numerics:

qEW
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FIG. 12. (Left) Correlators in d = 1 from simulations of harmonic depinning (qEW) and anharmonic depinning (in the qKPZ universality
class), compared to the analytic solution of the flow equations. �(w) for anharmonic depinning decays slightly faster than the one for harmonic
depinning. The correlators are rescaled such that �(0) = |�0(0+)| = 1. (Right) Difference of the rescaled correlators measured or analytical.
We see that the qKPZ FRG one loop solution is around 3 time closer to the numerical simulation than qEW one-loop to his, highlighting the
efficiency of our procedure.

FIG. 13. (Left) Correlators in d = 2 from simulations of harmonic
depinning (qEW) and anharmonic depinning (qKPZ class), com-
pared to the solution of the FRG flow equations. The FRG solution is
much closer to anharmonic depinning than to qEW. The correlators
are rescaled such that �(0) = |�0(0+)| = 1. (Right) Difference
of the rescaled correlators measured and analytical. The agreement
between simulations and theory is of the same order of magnitude
for the two universality class, even if the qKPZ theory is much more
sophisticated.

d = 2, and d = 3, we constructed a consistent theory. The

crucial ingredient is a flow-equation for the KPZ non-linearity,
which is controlled in dimension d. Behind this feature lies
the observation that all field theories for qEW with SR or LR
elasticity, as well as qKPZ merge into a single theory in di-
mension d = 0. Our theory has predictive powers as long
as we have a sufficient knowledge of the qEW fixed point in
small dimensions, and we are not too far away from d = 0.
We derived several bounds, respected in low dimensions, but
violated in dimension d = 3; there we currently can only close
our scheme with an adhoc assumption.

We hope that our method of first measuring the effective
theory in a simulation, before attempting to build a field the-
ory, can serve in other contexts as well, as e.g. fully devel-
oped turbulence. Applying our approach to other growth ex-
periments in d = 2 for which no theory is available seems
promising. We hope it will also shed light on the problems in
the standard (thermal) KPZ equation in higher dimensions.
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Conclusions

• when in doubt: measure effective long-distance action 
(  theory/description)

• standard elastic depinning (qEW) has non-trivial 
disorder correlator given by FRG

• imbibition (e.g. TL92), anharmonic depinning and 
qKPZ all belong to the same universality class: the 
effective long-wavelength theory is qKPZ

• you need to introduce a confining potential 
 to measure disorder correlations

 give up the Cole-Hopf transform 
 yields an RG fixed point

• a field theory can be build

=

m2[w − u(x, t)]
⇒
⇒
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Abstract. Domain walls in magnets, vortex lattices in superconductors, contact lines at
depinning, and many other systems can be modeled as an elastic system subject to quenched
disorder. The ensuing field theory posesses a well-controlled perturbative expansion around
its upper critical dimension. Contrary to standard field theory, the renormalization group
flow involves a function, the disorder correlator �(w), and is therefore termed the functional
renormalization group (FRG). �(w) is a physical observable, the auto-correlation function of
the center of mass of the elastic manifold. In this review, we give a pedagogical introduction
into its phenomenology and techniques. This allows us to treat both equilibrium (statics), and
depinning (dynamics). Building on these techniques, avalanche observables are accessible:
distributions of size, duration, and velocity, as well as the spatial and temporal shape. Various
equivalences between disordered elastic manifolds, and sandpile models exist: an elastic string
driven at a point and the Oslo model; disordered elastic manifolds and Manna sandpiles; charge
density waves and Abelian sandpiles or loop-erased random walks. Each of the mappings
between these systems requires specific techniques, which we develop, including modeling of
discrete stochastic systems via coarse-grained stochastic equations of motion, super-symmetry
techniques, and cellular automata. Stronger than quadratic nearest-neighbor interactions lead
to directed percolation, and non-linear surface growth with additional KPZ terms. On the other
hand, KPZ without disorder can be mapped back to disordered elastic manifolds, either on the
directed polymer for its steady state, or a single particle for its decay. Other topics covered are
the relation between functional RG and replica symmetry breaking, and random field magnets.
Emphasis is given to numerical and experimental tests of the theory.

Anisotropic depinning with its relation to directed percolation, explained in section 5.7.
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