

Some results on Plasticity in Amorphous Materials

Anne Tanguy

Tristan Albaret, Etienne Barthel, Yaroslav Beltukov, Tanguy Damart, Claudio Fusco, Valentina Giordano, Anthony Gravouil, Guillaume Kermouche, Fabien Leonforte, Christine Martinet, Boris Mantisi, Dmitry Parshin, David Rodney, Matias Sepulveda, Joachim Wittmer

- I. Phenomenology
- **II.** Mechanical Instability
- **III.** Plastic Flow

I. Phenomenology

- II. Mechanical Instability
- **III. Plastic Flow**

Amorphous materials are Very hard materials

but they are Ductile at small scale

Micropillar in pure silica glass

Their behaviour is composition and loading dependent

Their behaviour is composition and loading dependent

Composition

Soda-lime glass

Quasi-static indentation (0.2 mm/mn, 69N)

Strain Rate

Impact velocity (410 mm/s, 562N)

Applied Load

Bulk Metallic Glass

V. Keryvin et al. (2008)

b

(a) 60% SiO₂ 20% Al₂O₃ 20% CaO; (b) 80% SiO₂ 10% Al₂O₃ 10% CaO; (c) 100% SiO₂

Their behaviour depends on the loading history

C. Martinet et al. (2020)

What happens inside a disordered material ?

- I. Phenomenology
- **II.** Mechanical Instability
- **III. Plastic Flow**

At equilibrium, an **amorphous** solid is prepared in a **metastable** state. A **mechanical equilibrium** corresponds to a local minimum of the **potential energy**. At fixed **temperature**, it is kept in a local minimum of the **thermodynamic potential**. The external driving deforms the energy landscape, up to the loss of equilibrium

Hill's Criterion for Crystals Stability (1962) in Continuous Media Helmholtz Free Energy $F(Y) \equiv F(X) + \Omega(X) \left\{ \tau_{ij}(X) \eta_{ij} + \frac{1}{2} C_{ijkl}(X) \eta_{ij} \eta_{kl} + \cdots \right\}_{l'}$ $\min_{\{\underline{w},\underline{k}\}} \left(\begin{array}{c} C_{ijkl} w_i w_k k_j k_l \end{array} \right) \ge 0 \qquad \eta_{ij} \approx \begin{array}{c} w_i k_j \\ \uparrow \end{array}$ Slip Plane **Stability Criterion Burgers Vector** Spinodal Limit R.E. Miller and D. Rodney(2008) Reversible (Elastic) Step Inteversible (Plastic) Step

С

0.95

Prediction of plasticity through *soft* vibration modes and **local elastic moduli** in a 2D Lennard-Jones glass:

Elementary Shear Band:

Quadrupolar Local Rearrangement (STZ):

A single localized mode

Superposition of localized modes, on percolating soft zones γ_c

Signature of Plasticity in the local shear stress components in a 2D LJ Glass

Step=

Pristine micro-crystal L. Truskinovsky et al. (2021)

Total Local Shear Stress Incremental + Quenched Stress

Incremental Local Shear Stress

2

M. Tsamados et al. (2008)

Elementary Rearrangements in Plastic Deformation

Athermal Quasi-Static deformation of a-Si

Local Irreversible Plastic deformation

T. Albaret et al. (2016)

Local Irreversible Plastic deformation

Example of a 2D Lennard-Jones glass

T1 rearrangement in a 2D silica glass

Fig. 1. Elastic and plastic deformation in ring exchange. (A) Cartoon models of the 2D silica structure. (B to E) TEM images showing a ring rearrangement that transforms a 5-7-5-7 duster into a 6-6-6-6 cluster. The dark spots are Si-O-Si columns that correspond with the top and side views in (A). Images have been smoothed and Fourier-filtered to remove the graphene lattice background [see figs. S2 and S3 and (17)]. (F) A trajectory map of the atomic sites. Color (red to yellow) indicates time of motion. (G) Larger view of the region from (A), and (H) corresponding first-to-last frame displacement map. The arrows have been enlarged $\times 2$ to increase visibility; color indicates size of displacement, from 0 (dark blue) to ≥ 1.3 Å (red). The region between the bond rearrangement and the edge of the sheet exhibits strong local rotation. Scale bars: 1 nm. See also movies S1 and S2.

Huang et al. Science (october 2013)

Sensitivity to **Composition** and **Pressure** in (1-x) SiO₂ + x Na₂O

Elastic Moduli in a **sodo-silicate** glass (1-x)SiO₂ + xNa₂O:

G. Molnar et al. (2016)

Sensitivity to Composition and Pressure in (1-x) SiO₂ + x Na₂O

- I. Phenomenology
- II. Mechanical Instability
- **III.** Plastic Flow

General Behaviour for Plastic Flow in Amorphous materials

Critical Behaviour below Yielding

Avalanche Size distribution

Percolation of Active Clusters

Z. Budrikis et al. (2017)

P. Schall et al. (2017)

The Occurrence of Permanent Shear-Banding in Non-Universal

Sensitivity to Local Disorder

Summary

A. Tanguy (2021)

Conclusion

Universal features:

Plasticity as a Mechanical Instability (atomistic buckling)

Elementary events (Eshelby inclusions and Elementary – embrionic - shear bands) Critical behaviour before yielding

Non-universal features have engineering importance:

Structural signature of plastic rearrangements Number and spatial distribution of plastic events as a function of temperature, as a function of composition, and as a function of strain rate Importance of Self-softening or strong heterogeneities for permanent shear-banding Sensitivity of the permanent – mature – shear-banding to the boundary conditions

Comparison to crystals:

Difficulty to identify a permanent structural signature of plasticity Coupling between shear and densification No order to disorder transition

Eshelby Inclusion (1957)

Similar Cases:

1) Uniform Load at infinity:

2) Empty Inclusion:

3) Elastic Inhomogeneity:

 $\underline{\underline{\Sigma}} + \underline{\underline{C}} : \left(\underline{\underline{S}} - I\right) : \underline{\underline{\varepsilon}}^* = \mathbf{0}$ $\underline{\underline{\sigma}}^M = \underline{\underline{\Sigma}} + \underline{\underline{C}} : \underline{\underline{S}} : \underline{\underline{\varepsilon}}^*$

 $\underline{\underline{\sigma}}^{I} = \underline{\underline{\Sigma}} + \underline{\underline{C}} : \left(\underline{\underline{S}} - I\right) : \underline{\underline{\varepsilon}}^{*} = \underline{\underline{C}}^{*} : \underline{\underline{\varepsilon}}^{I}$ $\underline{\varepsilon}^{I} = \underline{\underline{E}} + \underline{\underline{S}} : \underline{\varepsilon}^{*}$

The Example of Amorphous Silicon

