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Soft jammed suspensions

Small soft particles packed in a fluid

Concentrated emulsion Microgel suspensions

[Fréchet lab, UC Berkeley]



Rheology of yield stress fluids
Stationary flow curve

• Hershel-Bulkley behavior in simple shear (yield stress �y)

� = �y + k �̇n (0 < n < 1)

• n = 1: limit case of a Bingham fluid

[Ovarlez et al.,

JNNFM 2013]



Rheological models

Phenomenological constitutive models

• Relate stress tensor ⌃ to strain tensor E = 1
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• Viscoelastoplastic models
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• Von Mises yield criterion: plastic flow when |⌃0| > �y
(⌃0 = deviatoric/traceless part of ⌃)

• For a Bingham fluid [Saramito, JNNFM 2007]

f (⌃) = � 1

⌧el
max

✓
0,

|⌃0|� �y
|⌃0|

◆
⌃

• Can be adapted to provide Hershel-Bulkley [Saramito, 2009]

• No microscopic guidance for f (⌃), purely phenomenological



Rheological models

Experimental test of viscoelastoplastic models
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Foam flow around an obstacle under pressure gradient

[Cheddadi et al., EPJE 2011] Top: theory, bottom: experiment



Open questions

• Microscopic grounding?

• Can one derive a viscoelastoplastic constitutive law from a
given microscopic dynamics of soft particles?



A minimal suspension model

• Overdamped soft disks, no hydrodynamic interactions

• Equation of motion of particle i (2D, athermal)
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vi � v1(ri )
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X

j 6=i

F(rj � ri ) = 0

System driven by flow
field v1(r), with
uniform gradient rv1



Probabilistic description

Exact evolution equation for the pair correlation

function g(r)

@tg(r) +r · J(r) = 0
with probability flux

J(r) = rv1 · [r ⌦ g(r)]� F(r)g(r)� ⇢
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Exact stress dynamics

• Microscopic definition of stress tensor

⌃ =
1
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⇢2
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• Stress evolution: multiply by r ⌦ F(r) and integrate over r

@t⌃ = rv1 ·⌃+⌃ ·rv1 + S2[g(r)] + S3[g3(r, r
0)]

e.g., S3 = � ⇢3

2
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F(r0)⌦ F(r) + r ⌦ F(r0) · (rF(r))T

⇤
g3(r, r0)drdr0

• Standard result for colloidal suspensions
[Batchelor 70s; Russel 80s, 90s; Brady 90s; Morris 2010s,...]

• Need to close stress dynamics



Microstructure closure
Approximate g3 in terms of g

• Simplest assumption: Kirkwood closure
g3(r, r0) ⇡ g(r)g(r0)g(r � r

0)

• Numerical test in contact area (LAMMPS simulations, � = 0.875)
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Stress closure

Parametrize g(r) with ⌃0

Anisotropy expansion

g(r) = grest
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↵ is determined self-consistently



Stress closure

Minimal model for grest(r)

grest(r) ⇡
3

⇡⇢r⇤
�(r � r
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• Dirac weight such that 6 nearest neighbors
[H(r) Heaviside function]

• Nearest neighbor peak
location r

⇤(p), with
pressure p = �1

2
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Stress evolution equation

Lowest order approximation: p = p(�)

@t⌃
0 = (�)E1 +⌦1 ·⌃0 �⌃0 ·⌦1 +

�
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• Minimal form of the stress evolution equation

All coe�cients , �, ⇠,... have known (but complicated)
expressions in terms of packing fraction � and microscopic
parameters

[Cuny, Mari, EB, PRL 127, 218003 (2021); JSTAT 033206 (2022)]



Yield stress behavior

Bingham-like yield stress
behavior for both shear
stress � and normal
stress di↵erence N1
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[Cuny, Mari, EB, PRL (2021)]



Relaxation after a preshear

Polar representation (S , ✓): N1 = 2S cos ✓, � = S sin ✓

S fast variable, ✓ slow variable for low shear rate �̇

[Cuny, Mari, EB, PRL (2021); Soft Matter (2022)]



Conclusion

• A constitutive model for jammed soft suspensions derived
from microscopics

• Reproduces important qualitative features: yield stress,
stress overshoot on step increase of shear rate, power-law
decay in creep, etc.
[Cuny, Mari, EB, Soft Matter (2022)]

• Outlook: Try to improve closure approximations to get
Hershel-Bulkley behavior and solid elastic branch


